from numba import njit
from tardis.montecarlo.montecarlo_numba import njit_dict
import numpy as np
from tardis import constants as const
h_cgs = const.h.cgs.value
c = const.c.to("cm/s").value
kb = const.k_B.cgs.value
inv_c2 = 1 / (c ** 2)
[docs]@njit(**njit_dict)
def calculate_transition_probabilities(
transition_probability_coef,
beta_sobolev,
j_blues,
stimulated_emission_factor,
transition_type,
lines_idx,
block_references,
transition_probabilities,
normalize,
):
"""
Calculates transition probabilities for macro_atom interactions
transition_probability_coef must be a 1D array
transition_type, lines_idx, and block_references must be int-type arrays
beta_sobolev, j_blues,stimulated_emission_factor, and transition_probabilities must be 2D array
"""
norm_factor = np.zeros(transition_probabilities.shape[1])
for i in range(transition_probabilities.shape[0]):
line_idx = lines_idx[i]
for j in range(transition_probabilities.shape[1]):
transition_probabilities[i, j] = (
transition_probability_coef[i] * beta_sobolev[line_idx, j]
)
if transition_type[i] == 1:
for j in range(transition_probabilities.shape[1]):
transition_probabilities[i, j] *= (
stimulated_emission_factor[line_idx, j]
* j_blues[line_idx, j]
)
if normalize:
for i in range(block_references.shape[0] - 1):
for k in range(transition_probabilities.shape[1]):
norm_factor[k] = 0.0
for j in range(block_references[i], block_references[i + 1]):
for k in range(transition_probabilities.shape[1]):
norm_factor[k] += transition_probabilities[j, k]
for k in range(transition_probabilities.shape[1]):
if norm_factor[k] != 0.0:
norm_factor[k] = 1 / norm_factor[k]
else:
norm_factor[k] = 1.0
for j in range(block_references[i], block_references[i + 1]):
for k in range(0, transition_probabilities.shape[1]):
transition_probabilities[j, k] *= norm_factor[k]