Source code for tardis.plasma.properties.radiative_properties

import logging

import numpy as np
import pandas as pd
import numexpr as ne
from astropy import units as u
from tardis import constants as const
from numba import jit, prange

from tardis.plasma.properties.base import (
    ProcessingPlasmaProperty,
    TransitionProbabilitiesProperty,
)
from tardis.plasma.properties.util import macro_atom

logger = logging.getLogger(__name__)

__all__ = [
    "StimulatedEmissionFactor",
    "TauSobolev",
    "BetaSobolev",
    "TransitionProbabilities",
    "RawRadBoundBoundTransProbs",
]

C_EINSTEIN = (
    4.0 * (np.pi * const.e.esu) ** 2 / (const.c.cgs * const.m_e.cgs)
).value  # See tardis/docs/physics/plasma/macroatom.rst


[docs]class StimulatedEmissionFactor(ProcessingPlasmaProperty): """ Attributes ---------- stimulated_emission_factor : Numpy Array, dtype float Indexed by lines, columns as zones. """ outputs = ("stimulated_emission_factor",) latex_formula = (r"1-\dfrac{g_{lower}n_{upper}}{g_{upper}n_{lower}}",) def __init__(self, plasma_parent=None, nlte_species=None): super(StimulatedEmissionFactor, self).__init__(plasma_parent) self._g_upper = None self._g_lower = None self.nlte_species = nlte_species
[docs] def get_g_lower(self, g, lines_lower_level_index): if self._g_lower is None: g_lower = np.array( g.iloc[lines_lower_level_index], dtype=np.float64 ) self._g_lower = g_lower[np.newaxis].T return self._g_lower
[docs] def get_g_upper(self, g, lines_upper_level_index): if self._g_upper is None: g_upper = np.array( g.iloc[lines_upper_level_index], dtype=np.float64 ) self._g_upper = g_upper[np.newaxis].T return self._g_upper
[docs] def get_metastable_upper(self, metastability, lines_upper_level_index): if getattr(self, "_meta_stable_upper", None) is None: self._meta_stable_upper = metastability.values[ lines_upper_level_index ][np.newaxis].T return self._meta_stable_upper
[docs] def calculate( self, g, level_number_density, lines_lower_level_index, lines_upper_level_index, metastability, lines, ): n_lower = level_number_density.values.take( lines_lower_level_index, axis=0, mode="raise" ) n_upper = level_number_density.values.take( lines_upper_level_index, axis=0, mode="raise" ) g_lower = self.get_g_lower(g, lines_lower_level_index) g_upper = self.get_g_upper(g, lines_upper_level_index) meta_stable_upper = self.get_metastable_upper( metastability, lines_upper_level_index ) stimulated_emission_factor = ne.evaluate( "1 - ((g_lower * n_upper) / " "(g_upper * n_lower))" ) stimulated_emission_factor[n_lower == 0.0] = 0.0 stimulated_emission_factor[ np.isneginf(stimulated_emission_factor) ] = 0.0 stimulated_emission_factor[ meta_stable_upper & (stimulated_emission_factor < 0) ] = 0.0 if self.nlte_species: nlte_lines_mask = ( lines.reset_index() .apply( lambda row: (row.atomic_number, row.ion_number) in self.nlte_species, axis=1, ) .values ) stimulated_emission_factor[ (stimulated_emission_factor < 0) & nlte_lines_mask[np.newaxis].T ] = 0.0 return stimulated_emission_factor
[docs]class TauSobolev(ProcessingPlasmaProperty): """ Attributes ---------- tau_sobolev : Pandas DataFrame, dtype float Sobolev optical depth for each line. Indexed by line. Columns as zones. """ outputs = ("tau_sobolevs",) latex_name = (r"\tau_{\textrm{sobolev}}",) latex_formula = ( r"\dfrac{\pi e^{2}}{m_{e} c}f_{lu}\lambda t_{exp}\ n_{lower} \Big(1-\dfrac{g_{lower}n_{upper}}{g_{upper}n_{lower}}\Big)", ) def __init__(self, plasma_parent): super(TauSobolev, self).__init__(plasma_parent) self.sobolev_coefficient = ( ( ((np.pi * const.e.gauss ** 2) / (const.m_e.cgs * const.c.cgs)) * u.cm * u.s / u.cm ** 3 ) .to(1) .value )
[docs] def calculate( self, lines, level_number_density, lines_lower_level_index, time_explosion, stimulated_emission_factor, j_blues, f_lu, wavelength_cm, ): f_lu = f_lu.values[np.newaxis].T wavelength = wavelength_cm.values[np.newaxis].T n_lower = level_number_density.values.take( lines_lower_level_index, axis=0, mode="raise" ) tau_sobolevs = ( self.sobolev_coefficient * f_lu * wavelength * time_explosion * n_lower * stimulated_emission_factor ) if np.any(np.isnan(tau_sobolevs)) or np.any( np.isinf(np.abs(tau_sobolevs)) ): raise ValueError( "Some tau_sobolevs are nan, inf, -inf in tau_sobolevs." " Something went wrong!" ) return pd.DataFrame( tau_sobolevs, index=lines.index, columns=np.array(level_number_density.columns), )
[docs]class BetaSobolev(ProcessingPlasmaProperty): """ Attributes ---------- beta_sobolev : Numpy Array, dtype float """ outputs = ("beta_sobolev",) latex_name = (r"\beta_{\textrm{sobolev}}",)
[docs] def calculate(self, tau_sobolevs): if getattr(self, "beta_sobolev", None) is None: initial = 0.0 else: initial = self.beta_sobolev beta_sobolev = pd.DataFrame( initial, index=tau_sobolevs.index, columns=tau_sobolevs.columns ) self.calculate_beta_sobolev( tau_sobolevs.values.ravel(), beta_sobolev.values.ravel() ) return beta_sobolev
[docs] @staticmethod @jit(nopython=True, parallel=True) def calculate_beta_sobolev(tau_sobolevs, beta_sobolevs): for i in prange(len(tau_sobolevs)): if tau_sobolevs[i] > 1e3: beta_sobolevs[i] = tau_sobolevs[i] ** -1 elif tau_sobolevs[i] < 1e-4: beta_sobolevs[i] = 1 - 0.5 * tau_sobolevs[i] else: beta_sobolevs[i] = (1 - np.exp(-tau_sobolevs[i])) / ( tau_sobolevs[i] ) return beta_sobolevs
[docs]class TransitionProbabilities(ProcessingPlasmaProperty): """ Attributes ---------- transition_probabilities : Pandas DataFrame, dtype float """ outputs = ("transition_probabilities",) def __init__(self, plasma_parent): super(TransitionProbabilities, self).__init__(plasma_parent) self.initialize = True self.normalize = True
[docs] def calculate( self, atomic_data, beta_sobolev, j_blues, stimulated_emission_factor, tau_sobolevs, ): # I wonder why? # Not sure who wrote this but the answer is that when the plasma is # first initialised (before the first iteration, without temperature # values etc.) there are no j_blues values so this just prevents # an error. Aoife. if len(j_blues) == 0: return None macro_atom_data = self._get_macro_atom_data(atomic_data) if self.initialize: self.initialize_macro_atom_transition_type_filters( atomic_data, macro_atom_data ) self.transition_probability_coef = ( self._get_transition_probability_coefs(macro_atom_data) ) self.initialize = False transition_probabilities = self._calculate_transition_probability( macro_atom_data, beta_sobolev, j_blues, stimulated_emission_factor ) transition_probabilities = pd.DataFrame( transition_probabilities, index=macro_atom_data.transition_line_id, columns=tau_sobolevs.columns, ) return transition_probabilities
def _calculate_transition_probability( self, macro_atom_data, beta_sobolev, j_blues, stimulated_emission_factor ): transition_probabilities = np.empty( (self.transition_probability_coef.shape[0], beta_sobolev.shape[1]) ) # trans_old = self.calculate_transition_probabilities(macro_atom_data, beta_sobolev, j_blues, stimulated_emission_factor) transition_type = macro_atom_data.transition_type.values lines_idx = macro_atom_data.lines_idx.values tpos = macro_atom_data.transition_probability.values macro_atom.calculate_transition_probabilities( tpos, beta_sobolev.values, j_blues.values, stimulated_emission_factor, transition_type, lines_idx, self.block_references, transition_probabilities, self.normalize, ) return transition_probabilities
[docs] def calculate_transition_probabilities( self, macro_atom_data, beta_sobolev, j_blues, stimulated_emission_factor ): transition_probabilities = self.prepare_transition_probabilities( macro_atom_data, beta_sobolev, j_blues, stimulated_emission_factor ) return transition_probabilities
[docs] def initialize_macro_atom_transition_type_filters( self, atomic_data, macro_atom_data ): self.transition_up_filter = macro_atom_data.transition_type.values == 1 self.transition_up_line_filter = macro_atom_data.lines_idx.values[ self.transition_up_filter ] self.block_references = np.hstack( ( atomic_data.macro_atom_references.block_references, len(macro_atom_data), ) )
@staticmethod def _get_transition_probability_coefs(macro_atom_data): return macro_atom_data.transition_probability.values[np.newaxis].T
[docs] def prepare_transition_probabilities( self, macro_atom_data, beta_sobolev, j_blues, stimulated_emission_factor ): current_beta_sobolev = beta_sobolev.values.take( macro_atom_data.lines_idx.values, axis=0, mode="raise" ) transition_probabilities = ( self.transition_probability_coef * current_beta_sobolev ) j_blues = j_blues.take( self.transition_up_line_filter, axis=0, mode="raise" ) macro_stimulated_emission = stimulated_emission_factor.take( self.transition_up_line_filter, axis=0, mode="raise" ) transition_probabilities[self.transition_up_filter] *= ( j_blues * macro_stimulated_emission ) return transition_probabilities
def _normalize_transition_probabilities(self, transition_probabilities): macro_atom.normalize_transition_probabilities( transition_probabilities, self.block_references ) def _new_normalize_transition_probabilities(self, transition_probabilites): for i, start_id in enumerate(self.block_references[:-1]): end_id = self.block_references[i + 1] block = transition_probabilites[start_id:end_id] transition_probabilites[start_id:end_id] *= 1 / ne.evaluate( "sum(block, 0)" ) @staticmethod def _get_macro_atom_data(atomic_data): try: return atomic_data.macro_atom_data except: return atomic_data.macro_atom_data_all
[docs]class RawRadBoundBoundTransProbs( TransitionProbabilities, TransitionProbabilitiesProperty ): """ Attributes ---------- p_rad_bb : pandas.DataFrame, dtype float Unnormalized transition probabilities for radiative bound-bound transitions """ outputs = ("p_rad_bb",) transition_probabilities_outputs = ("p_rad_bb",) def __init__(self, plasma_parent): super(RawRadBoundBoundTransProbs, self).__init__(plasma_parent) self.normalize = False
[docs] def calculate( self, atomic_data, beta_sobolev, j_blues, stimulated_emission_factor, tau_sobolevs, continuum_interaction_species, ): p_rad_bb = super().calculate( atomic_data, beta_sobolev, j_blues, stimulated_emission_factor, tau_sobolevs, ) transition_type = atomic_data.macro_atom_data.transition_type.replace( 1, 0 ) index = pd.MultiIndex.from_arrays( [ atomic_data.macro_atom_data.source_level_idx, atomic_data.macro_atom_data.destination_level_idx, transition_type, ] ) mask_continuum_species = pd.MultiIndex.from_arrays( [ atomic_data.macro_atom_data.atomic_number, atomic_data.macro_atom_data.ion_number, ] ).isin(continuum_interaction_species) p_rad_bb = p_rad_bb.set_index(index, drop=True)[mask_continuum_species] # To obtain energy-flow rates in cgs from the precomputed transition # probabilities in the atomic data, we have to multiply by the # constant C_EINSTEIN and convert from eV to erg. # See tardis/docs/physics/plasma/macroatom.rst p_rad_bb = p_rad_bb * C_EINSTEIN * u.eV.to(u.erg) return p_rad_bb