Source code for tardis.io.parsers.blondin_toymodel

import re

import yaml

import numpy as np
import pandas as pd

from astropy import units as u

from tardis.util.base import parse_quantity

PATTERN_REMOVE_BRACKET = re.compile(r"\[.+\]")
T0_PATTERN = re.compile("tend = (.+)\n")


[docs]def read_blondin_toymodel(fname): """ Reading the Blondin toy-model format and returns a dictionary and a dataframe Parameters ---------- fname : str path or filename to blondin toymodel Returns ------- blondin_dict : dict dictionary containing most of the meta data of the model blondin_csv : pandas.DataFrame DataFrame containing the csv part of the toymodel """ with open(fname, "r") as fh: for line in fh: if line.startswith("#idx"): break else: raise ValueError( "File {0} does not conform to Toy Model format as it does " "not contain #idx" ) columns = [ PATTERN_REMOVE_BRACKET.sub("", item) for item in line[1:].split() ] raw_blondin_csv = pd.read_csv( fname, delim_whitespace=True, comment="#", header=None, names=columns ) raw_blondin_csv.set_index("idx", inplace=True) blondin_csv = raw_blondin_csv.loc[ :, [ "vel", "dens", "temp", "X_56Ni0", "X_Ti", "X_Ca", "X_S", "X_Si", "X_O", "X_C", ], ] rename_col_dict = { "vel": "velocity", "dens": "density", "temp": "t_electron", } rename_col_dict.update({item: item[2:] for item in blondin_csv.columns[3:]}) rename_col_dict["X_56Ni0"] = "Ni56" blondin_csv.rename(columns=rename_col_dict, inplace=True) blondin_csv.iloc[:, 3:] = blondin_csv.iloc[:, 3:].divide( blondin_csv.iloc[:, 3:].sum(axis=1), axis=0 ) # changing velocities to outer boundary new_velocities = 0.5 * ( blondin_csv.velocity.iloc[:-1].values + blondin_csv.velocity.iloc[1:].values ) new_velocities = np.hstack( (new_velocities, [2 * new_velocities[-1] - new_velocities[-2]]) ) blondin_csv["velocity"] = new_velocities with open(fname, "r") as fh: t0_string = T0_PATTERN.findall(fh.read())[0] t0 = parse_quantity(t0_string.replace("DAYS", "day")) blondin_dict = {} blondin_dict["model_density_time_0"] = str(t0) blondin_dict["description"] = f"Converted {fname} to csvy format" blondin_dict["tardis_model_config_version"] = "v1.0" blondin_dict_fields = [ dict( name="velocity", unit="km/s", desc="velocities of shell outer bounderies.", ) ] blondin_dict_fields.append( dict(name="density", unit="g/cm^3", desc="mean density of shell.") ) blondin_dict_fields.append( dict(name="t_electron", unit="K", desc="electron temperature.") ) for abund in blondin_csv.columns[3:]: blondin_dict_fields.append( dict(name=abund, desc=f"Fraction {abund} abundance") ) blondin_dict["datatype"] = {"fields": blondin_dict_fields} return blondin_dict, blondin_csv
[docs]def convert_blondin_toymodel( in_fname, out_fname, v_inner, v_outer, conversion_t_electron_rad=None ): """ Parameters ---------- in_fname : str input toymodel file out_fname : str output csvy file conversion_t_electron_rad : float or None multiplicative conversion factor from t_electron to t_rad. if `None` t_rad is not calculated v_inner : float or astropy.unit.Quantity inner boundary velocity. If float will be interpreted as km/s v_outer : float or astropy.unit.Quantity outer boundary velocity. If float will be interpreted as km/s """ blondin_dict, blondin_csv = read_blondin_toymodel(in_fname) blondin_dict["v_inner_boundary"] = str(u.Quantity(v_inner, u.km / u.s)) blondin_dict["v_outer_boundary"] = str(u.Quantity(v_outer, u.km / u.s)) if conversion_t_electron_rad is not None: blondin_dict["datatype"]["fields"].append( { "desc": "converted radiation temperature " f"using multiplicative factor={conversion_t_electron_rad}", "name": "t_rad", "unit": "K", } ) blondin_csv["t_rad"] = ( conversion_t_electron_rad * blondin_csv.t_electron ) csvy_file = f"---\n{yaml.dump(blondin_dict, default_flow_style=False)}\n---\n{blondin_csv.to_csv(index=False)}" with open(out_fname, "w") as fh: fh.write(csvy_file)