Source code for tardis.io.atom_data.base

# atomic model


import logging
import numpy as np
import pandas as pd

from scipy import interpolate
from collections import OrderedDict
from astropy import units as u
from tardis import constants as const
from astropy.units import Quantity
from tardis.io.atom_data.util import resolve_atom_data_fname


[docs]class AtomDataNotPreparedError(Exception): pass
[docs]class AtomDataMissingError(Exception): pass
logger = logging.getLogger(__name__)
[docs]class AtomData(object): """ Class for storing atomic data Parameters ---------- atom_data : pandas.DataFrame A DataFrame containing the *basic atomic data* with: index : atomic_number columns : symbol, name, mass[u]. ionization_data : pandas.DataFrame A DataFrame containing the *ionization data* with: index : atomic_number, ion_number columns : ionization_energy[eV]. It is important to note here is that `ion_number` describes the *final ion state* e.g. H I - H II is described with ion=1 levels : pandas.DataFrame A DataFrame containing the *levels data* with: index : numerical index columns : atomic_number, ion_number, level_number, energy[eV], g[1], metastable. lines : pandas.DataFrame A DataFrame containing the *lines data* with: index : numerical index columns : line_id, atomic_number, ion_number, level_number_lower, level_number_upper, wavelength[angstrom], nu[Hz], f_lu[1], f_ul[1], B_ul[?], B_ul[?], A_ul[1/s]. macro_atom_data : A DataFrame containing the *macro atom data* with: index : numerical index columns : atomic_number, ion_number, source_level_number, destination_level_number, transition_line_id, transition_type, transition_probability; macro_atom_references : A DataFrame containing the *macro atom references* with: index : numerical index columns : atomic_number, ion_number, source_level_number, count_down, count_up, count_total. Refer to the docs: http://tardis.readthedocs.io/en/latest/physics/plasma/macroatom.html collision_data : (pandas.DataFrame, np.array) A DataFrame containing the *electron collisions data* with: index : atomic_number, ion_number, level_number_lower, level_number_upper columns : e_col_id, delta_e, g_ratio, c_ul; collision_data_temperatures : np.array An array with the collision temperatures. zeta_data : A DataFrame containing the *zeta data* for the nebular ionization calculation (i.e., the fraction of recombinations that go directly to the ground state) with: index : atomic_number, ion_charge columns : temperatures[K] synpp_refs : ? photoionization_data : pandas.DataFrame A DataFrame containing the *photoionization data* with: index : numerical index columns : atomic_number, ion_number, level_number, nu[Hz], x_sect[cm^2] two_photon_data : pandas.DataFrame A DataFrame containing the *two photon decay data* with: index: atomic_number, ion_number, level_number_lower, level_number_upper columns: A_ul[1/s], nu0[Hz], alpha, beta, gamma Attributes ---------- prepared : bool atom_data : pandas.DataFrame ionization_data : pandas.DataFrame macro_atom_data_all : pandas.DataFrame macro_atom_references_all : pandas.DataFrame collision_data : pandas.DataFrame collision_data_temperatures : numpy.array zeta_data : pandas.DataFrame synpp_refs : pandas.DataFrame symbol2atomic_number : OrderedDict atomic_number2symbol : OrderedDict photoionization_data : pandas.DataFrame two_photon_data : pandas.DataFrame Methods ------- from_hdf prepare_atom_data Notes ----- 1. The units of some columns are given in the square brackets. They are **NOT** the parts of columns' names! """ hdf_names = [ "atom_data", "ionization_data", "levels", "lines", "macro_atom_data", "macro_atom_references", "zeta_data", "collision_data", "collision_data_temperatures", "synpp_refs", "photoionization_data", "yg_data", "two_photon_data", ] # List of tuples of the related dataframes. # Either all or none of the related dataframes must be given related_groups = [ ("macro_atom_data_all", "macro_atom_references_all"), ("collision_data", "collision_data_temperatures"), ]
[docs] @classmethod def from_hdf(cls, fname=None): """ Function to read the atom data from a TARDIS atom HDF Store Parameters ---------- fname : str, optional Path to the HDFStore file or name of known atom data file (default: None) """ dataframes = dict() nonavailable = list() fname = resolve_atom_data_fname(fname) with pd.HDFStore(fname, "r") as store: for name in cls.hdf_names: try: dataframes[name] = store[name] except KeyError: nonavailable.append(name) atom_data = cls(**dataframes) try: atom_data.uuid1 = store.root._v_attrs["uuid1"].decode("ascii") except KeyError: atom_data.uuid1 = None try: atom_data.md5 = store.root._v_attrs["md5"].decode("ascii") except KeyError: atom_data.md5 = None try: atom_data.version = store.root._v_attrs["database_version"] except KeyError: atom_data.version = None # ToDo: strore data sources as attributes in carsus logger.info( f"\n\tReading Atom Data with:\n\tUUID = {atom_data.uuid1}\n\tMD5 = {atom_data.md5} " ) if nonavailable: logger.info( f'\n\tNon provided atomic data:\n\t{", ".join(nonavailable)}' ) return atom_data
def __init__( self, atom_data, ionization_data, levels=None, lines=None, macro_atom_data=None, macro_atom_references=None, zeta_data=None, collision_data=None, collision_data_temperatures=None, synpp_refs=None, photoionization_data=None, yg_data=None, two_photon_data=None, ): self.prepared = False # CONVERT VALUES TO CGS UNITS # Convert atomic masses to CGS # We have to use constants.u because astropy uses # different values for the unit u and the constant. # This is changed in later versions of astropy ( # the value of constants.u is used in all cases) if u.u.cgs == const.u.cgs: atom_data.loc[:, "mass"] = Quantity( atom_data["mass"].values, "u" ).cgs else: atom_data.loc[:, "mass"] = atom_data["mass"].values * const.u.cgs # Convert ionization energies to CGS ionization_data = ionization_data.squeeze() ionization_data[:] = Quantity(ionization_data[:], "eV").cgs # Convert energy to CGS levels.loc[:, "energy"] = Quantity(levels["energy"].values, "eV").cgs # Create a new columns with wavelengths in the CGS units lines["wavelength_cm"] = Quantity(lines["wavelength"], "angstrom").cgs # SET ATTRIBUTES self.atom_data = atom_data self.ionization_data = ionization_data self.levels = levels self.lines = lines # Rename these (drop "_all") when `prepare_atom_data` is removed! self.macro_atom_data_all = macro_atom_data self.macro_atom_references_all = macro_atom_references self.zeta_data = zeta_data self.collision_data = collision_data self.collision_data_temperatures = collision_data_temperatures self.synpp_refs = synpp_refs self.photoionization_data = photoionization_data self.yg_data = yg_data self.two_photon_data = two_photon_data self._check_related() self.symbol2atomic_number = OrderedDict( zip(self.atom_data["symbol"].values, self.atom_data.index) ) self.atomic_number2symbol = OrderedDict( zip(self.atom_data.index, self.atom_data["symbol"]) ) def _check_related(self): """ Check that either all or none of the related dataframes are given. """ for group in self.related_groups: check_list = [name for name in group if getattr(self, name) is None] if len(check_list) != 0 and len(check_list) != len(group): raise AtomDataMissingError( f'The following dataframes from the related group [{", ".join(group)}]' f'were not given: {", ".join(check_list)}' )
[docs] def prepare_atom_data( self, selected_atomic_numbers, line_interaction_type="scatter", nlte_species=[], ): """ Prepares the atom data to set the lines, levels and if requested macro atom data. This function mainly cuts the `levels` and `lines` by discarding any data that is not needed (any data for atoms that are not needed Parameters ---------- selected_atoms : set set of selected atom numbers, e.g. set([14, 26]) line_interaction_type : str can be 'scatter', 'downbranch' or 'macroatom' """ if not self.prepared: self.prepared = True else: raise AtomDataNotPreparedError("AtomData was already prepared") self.selected_atomic_numbers = selected_atomic_numbers self._check_selected_atomic_numbers() self.nlte_species = nlte_species self.levels = self.levels[ self.levels.index.isin( self.selected_atomic_numbers, level="atomic_number" ) ] self.levels_index = pd.Series( np.arange(len(self.levels), dtype=int), index=self.levels.index ) # cutting levels_lines self.lines = self.lines[ self.lines.index.isin( self.selected_atomic_numbers, level="atomic_number" ) ] self.lines.sort_values(by="wavelength", inplace=True) self.lines_index = pd.Series( np.arange(len(self.lines), dtype=int), index=self.lines.set_index("line_id").index, ) tmp_lines_lower2level_idx = self.lines.index.droplevel( "level_number_upper" ) self.lines_lower2level_idx = ( self.levels_index.loc[tmp_lines_lower2level_idx] .astype(np.int64) .values ) tmp_lines_upper2level_idx = self.lines.index.droplevel( "level_number_lower" ) self.lines_upper2level_idx = ( self.levels_index.loc[tmp_lines_upper2level_idx] .astype(np.int64) .values ) if ( self.macro_atom_data_all is not None and not line_interaction_type == "scatter" ): self.macro_atom_data = self.macro_atom_data_all.loc[ self.macro_atom_data_all["atomic_number"].isin( self.selected_atomic_numbers ) ].copy() self.macro_atom_references = self.macro_atom_references_all[ self.macro_atom_references_all.index.isin( self.selected_atomic_numbers, level="atomic_number" ) ].copy() if line_interaction_type == "downbranch": self.macro_atom_data = self.macro_atom_data.loc[ self.macro_atom_data["transition_type"] == -1 ] self.macro_atom_references = self.macro_atom_references.loc[ self.macro_atom_references["count_down"] > 0 ] self.macro_atom_references.loc[ :, "count_total" ] = self.macro_atom_references["count_down"] self.macro_atom_references.loc[ :, "block_references" ] = np.hstack( ( 0, np.cumsum( self.macro_atom_references["count_down"].values[:-1] ), ) ) elif line_interaction_type == "macroatom": self.macro_atom_references.loc[ :, "block_references" ] = np.hstack( ( 0, np.cumsum( self.macro_atom_references["count_total"].values[ :-1 ] ), ) ) self.macro_atom_references.loc[:, "references_idx"] = np.arange( len(self.macro_atom_references) ) self.macro_atom_data.loc[:, "lines_idx"] = self.lines_index.loc[ self.macro_atom_data["transition_line_id"] ].values self.lines_upper2macro_reference_idx = ( self.macro_atom_references.loc[ tmp_lines_upper2level_idx, "references_idx" ] .astype(np.int64) .values ) if line_interaction_type == "macroatom": # Sets all tmp_macro_destination_level_idx = pd.MultiIndex.from_arrays( [ self.macro_atom_data["atomic_number"], self.macro_atom_data["ion_number"], self.macro_atom_data["destination_level_number"], ] ) tmp_macro_source_level_idx = pd.MultiIndex.from_arrays( [ self.macro_atom_data["atomic_number"], self.macro_atom_data["ion_number"], self.macro_atom_data["source_level_number"], ] ) self.macro_atom_data.loc[:, "destination_level_idx"] = ( self.macro_atom_references.loc[ tmp_macro_destination_level_idx, "references_idx" ] .astype(np.int64) .values ) self.macro_atom_data.loc[:, "source_level_idx"] = ( self.macro_atom_references.loc[ tmp_macro_source_level_idx, "references_idx" ] .astype(np.int64) .values ) elif line_interaction_type == "downbranch": # Sets all the destination levels to -1 to indicate that they # are not used in downbranch calculations self.macro_atom_data.loc[:, "destination_level_idx"] = -1 if self.yg_data is not None: self.yg_data = self.yg_data.loc[self.selected_atomic_numbers] self.nlte_data = NLTEData(self, nlte_species)
def _check_selected_atomic_numbers(self): selected_atomic_numbers = self.selected_atomic_numbers available_atomic_numbers = np.unique( self.ionization_data.index.get_level_values(0) ) atomic_number_check = np.isin( selected_atomic_numbers, available_atomic_numbers ) if not all(atomic_number_check): missing_atom_mask = np.logical_not(atomic_number_check) missing_atomic_numbers = selected_atomic_numbers[missing_atom_mask] missing_numbers_str = ",".join(missing_atomic_numbers.astype("str")) msg = f"For atomic numbers {missing_numbers_str} there is no atomic data." raise AtomDataMissingError(msg) def __repr__(self): return f"<Atomic Data UUID={self.uuid1} MD5={self.md5} Lines={self.lines.line_id.count():d} Levels={self.levels.energy.count():d}>"
[docs]class NLTEData(object): def __init__(self, atom_data, nlte_species): self.atom_data = atom_data self.lines = atom_data.lines.reset_index() self.nlte_species = nlte_species if nlte_species: logger.info("Preparing the NLTE data") self._init_indices() if atom_data.collision_data is not None: self._create_collision_coefficient_matrix() def _init_indices(self): self.lines_idx = {} self.lines_level_number_lower = {} self.lines_level_number_upper = {} self.A_uls = {} self.B_uls = {} self.B_lus = {} for species in self.nlte_species: lines_idx = np.where( (self.lines.atomic_number == species[0]) & (self.lines.ion_number == species[1]) ) self.lines_idx[species] = lines_idx self.lines_level_number_lower[ species ] = self.lines.level_number_lower.values[lines_idx].astype(int) self.lines_level_number_upper[ species ] = self.lines.level_number_upper.values[lines_idx].astype(int) self.A_uls[species] = self.atom_data.lines.A_ul.values[lines_idx] self.B_uls[species] = self.atom_data.lines.B_ul.values[lines_idx] self.B_lus[species] = self.atom_data.lines.B_lu.values[lines_idx] def _create_collision_coefficient_matrix(self): self.C_ul_interpolator = {} self.delta_E_matrices = {} self.g_ratio_matrices = {} collision_group = self.atom_data.collision_data.groupby( level=["atomic_number", "ion_number"] ) for species in self.nlte_species: no_of_levels = self.atom_data.levels.loc[species].energy.count() C_ul_matrix = np.zeros( ( no_of_levels, no_of_levels, len(self.atom_data.collision_data_temperatures), ) ) delta_E_matrix = np.zeros((no_of_levels, no_of_levels)) g_ratio_matrix = np.zeros((no_of_levels, no_of_levels)) for ( ( atomic_number, ion_number, level_number_lower, level_number_upper, ), line, ) in collision_group.get_group(species).iterrows(): # line.columns : delta_e, g_ratio, temperatures ... C_ul_matrix[ level_number_lower, level_number_upper, : ] = line.values[2:] delta_E_matrix[level_number_lower, level_number_upper] = line[ "delta_e" ] # TODO TARDISATOMIC fix change the g_ratio to be the otherway round - I flip them now here. g_ratio_matrix[level_number_lower, level_number_upper] = ( 1 / line["g_ratio"] ) self.C_ul_interpolator[species] = interpolate.interp1d( self.atom_data.collision_data_temperatures, C_ul_matrix ) self.delta_E_matrices[species] = delta_E_matrix self.g_ratio_matrices[species] = g_ratio_matrix
[docs] def get_collision_matrix(self, species, t_electrons): """ Creat collision matrix by interpolating the C_ul values for the desired temperatures. """ c_ul_matrix = self.C_ul_interpolator[species](t_electrons) no_of_levels = c_ul_matrix.shape[0] c_ul_matrix[np.isnan(c_ul_matrix)] = 0.0 # TODO in tardisatomic the g_ratio is the other way round - here I'll flip it in prepare_collision matrix c_lu_matrix = ( c_ul_matrix * np.exp( -self.delta_E_matrices[species].reshape( (no_of_levels, no_of_levels, 1) ) / t_electrons.reshape((1, 1, t_electrons.shape[0])) ) * self.g_ratio_matrices[species].reshape( (no_of_levels, no_of_levels, 1) ) ) return c_ul_matrix + c_lu_matrix.transpose(1, 0, 2)